Mechanical and Aerospace Engineering

Francisco Espinosa-Loza PH.D. Exit Seminar

Analysis and Design of Cryogenic Pressure Vessels for Automotive Hydrogen Storage
By: Francisco Espinosa-Loza
Advisor: Professor Bahram Ravani


Cryogenic pressure vessels maximize hydrogen storage density by combining the high pressure (350-700 bar) typical of today’s composite pressure vessels with the cryogenic temperature (as low as 25 K) typical of low pressure liquid hydrogen vessels. Cryogenic pressure vessels comprise a high-pressure inner vessel made of carbon fiber-coated metal (similar to those used for storage of compressed gas), a vacuum space filled with numerous sheets of highly reflective metalized plastic (for high performance thermal insulation), and a metallic outer jacket. High density of hydrogen storage is key to practical hydrogen-fueled transportation by enabling (1) long-range (500+ km) transportation with high capacity vessels that fit within available spaces in the vehicle, and (2) reduced cost per kilogram of hydrogen stored through reduced need for expensive structural material (carbon fiber composite) necessary to make the vessel. Low temperature of storage also leads to reduced expansion energy (by an order of magnitude or more vs. ambient temperature compressed gas storage), potentially providing important safety advantages. All this is accomplished while simultaneously avoiding fuel venting typical of cryogenic vessels for all practical use scenarios.
This dissertation describes the work necessary for developing and demonstrating successive generations of cryogenic pressure vessels demonstrated at Lawrence Livermore National Laboratory. The work included (1) conceptual design, (2) detailed system design (3) structural analysis of cryogenic pressure vessels, (4) thermal analysis of heat transfer through cryogenic supports and vacuum multilayer insulation, and (5) experimental demonstration. Aside from succeeding in demonstrating a hydrogen storage approach that has established all the world records for hydrogen storage on vehicles (longest driving range, maximum hydrogen storage density, and maximum containment of cryogenic hydrogen without venting), the work also demonstrated a methodology for computationally efficient detailed modeling of cryogenic pressure vessels.
The work continues with support of the US Department of Energy to demonstrate a new generation of cryogenic vessels anticipated to improve on the hydrogen storage performance figures previously imposed in this project. The author looks forward to further contributing to a future of long-range, inexpensive, and safe zero emissions transportation.


Date(s) - 05/23/2014
10:15 am - 11:15 am

1065 Kemper Hall


Loading Map....