Mechanical and Aerospace Engineering

Areas of Interest in Mechanical Engineering

Areas of interest include:

Biomedical and Engineering Fluid Mechanics
Combustion and the Environment
Ground Vehicle Systems
Heat Transfer, Thermodynamics, and Energy Systems
Manufacturing
Mechanical Design, System Dynamics and Control
Transportation Systems

Biomedical and Engineering Fluid Mechanics

This field of study is based on the fundamentals of fluid mechanics and their broad range of applications in the biomedical and engineering arenas. Areas of current research include blood circulation in the body and its potential role in the regulation of normal physiological function and in the development of disease; groundwater and atmospheric flows and their implications for pollutant transport and environmental concerns; aerodynamic flow around transportation vehicles and its impact on vehicle performance; and flow in combustion engines and other energy systems with considerations of efficiency and environmental impact. These areas are investigated both experimentally and computationally.

Suggested Technical Electives: Aerospace Science and Engineering 138; Engineering 160 (only one unit of credit towards technical electives requirements); Chemical Engineering 161A, 161B; Civil and Environmental Engineering 144, 149; Mechanical Engineering 161, 163.

Combustion and the Environment

Combustion is widely used for energy generation, propulsion, heating, and waste disposal, as well as for many other applications. Mechanical engineers are often heavily involved with the design of combustion systems (internal combustion engines, gas turbines, furnaces, etc.) and deal with aspects of combustion ranging from increasing efficiencies to reducing pollutant emissions. This area of interest is designed for those who would like to work in fields that use combustion, or that deal with pollution related to combustion. With the current increased emphasis on reducing pollutants while efficiency is maintained or increased, the efforts of mechanical engineers in designing and improving combustion systems are becoming more important.

The program of study focuses on basic aspects of combustion, such as the properties of flames and fuels and pollution; applications of combustion to practical systems like engines and burners; design and optimization of systems that use combustion; and environmental considerations like pollution generation, control, transport, and effect.

Suggested Technical Electives: Mechanical Engineering 161, 163; Civil and Environmental Engineering 149, 150

Ground Vehicle Systems

An aspect of mechanical engineering is the design of surface vehicles. The emphasis in on the design of more environmentally benign vehicles that can provide transportation while using fewer resources. Innovations in this field require competence in vehicle dynamics, propulsion and engine concepts, control of power transmission, and construction of lightweight manufacturable structures and systems. Alternatively fueled power systems, including electric drives, are also studied.

Suggested Technical Electives: Aerospace Science and Engineering 127, 129.139; Civil and Environmental Engineering 130, 149, 160; Engineering 122, 160 (only one unit of credit towards technical electives requirement); Mechanical Engineering 121, 134, 152.

Heat Transfer, Thermodynamics, and Energy Systems

This area of interest emphasizes the fundamentals of heat transfer and thermodynamics and their application to the design of advanced engineering systems. The objective of this program of study is to introduce the fundamental processes of heat transfer and thermodynamics in complex engineering systems to enable more efficient, cost effective, and reliable designs with less environmental pollution and impact. An understanding of heat transfer and thermodynamics is required for the design of efficient, cost-effective systems for power generation (including advanced energy conversion systems), propulsion (including combustion engines and gas turbines), heat exchangers, industrial processes, refining, and chemical processing. This area of interest is important to many industries-aerospace, defense, automotive, metals, glass, paper, and plastic-as well as to the thermal design of electronic and computer packages.

Suggested Technical Electives: Aerospace Science and Engineering 138; Mechanical Engineering 161, 163.

Manufacturing

Manufacturing is the process of converting raw materials into products. A major activity of mechanical engineers is studying and working with various production methods and techniques, integrating creative design activities into actual fabricated products. The emphasis in the manufacturing program is to provide hands-on experience with state-of-the-art and computer-integrated processes and manufacturing methods. Laboratories have state-of-the-art manufacturing equipment for conventional and non-traditional machining, three-dimensional measurement, and plastic injection molding. Computer-oriented manufacturing is also an emphasis of the program. A manufacturing engineer will have a solid background in manufacturing processes and systems as well as in statistics, design, controls, and applications of microprocessors.

Suggested Technical Electives: Biomedical Engineering 118/Electrical and Computer Engineering 147; Electrical and Computer Engineering 160; Materials Science and Engineering 180, 181; Mechanical Engineering 150B, 151, 154.

Mechanical Design

The creation and improvement of products, processes, or systems that are mechanical in nature are the primary activities of a professional mechanical engineer. The development of a product, from concept generation to detailed design, manufacturing process selection and planning, quality control and assurance, and life-cycle considerations are areas of study and specialization in the area of mechanical design. Solutions to such major social problems as environmental pollution, lack of mass transportation and of raw materials, and energy shortages will depend heavily on the engineer’s ability to create new types of machinery and mechanical systems. The engineer-designer must have a solid and relatively broad background in the basic physical and engineering sciences and have the ability to solve a variety of problems. In addition to having technical competence, the designer must be able to consider the socio-economic consequences of a design and its possible impact on the environment. Product safety, reliability and economics are other considerations.

Suggested Technical Electives: Aerospace Science and Engineering 133, 139; Biological Systems Engineering 114, 120, 165; Biomedical Engineering 118/Electrical and Computer Engineering 147; Engineering 122, 160 (only one unit of credit towards technical electives requirement); Materials Science and Engineering 180, 181, 182; Mechanical Engineering 121, 134, 150B, 151, 152, 154, 161, 163.

System Dynamics and Control

Engineers are increasingly concerned with the performance of integrated dynamics systems in which it is not possible to optimize component parts without considering the overall system. System dynamics and control specialists are concerned with the modeling, analysis, and simulation of all types of dynamic systems and with the use of automatic control techniques to change the dynamic characteristics of systems in useful ways. The emphasis in this program is on the physical systems that are closely related to mechanical engineering, but the techniques for studying these systems apply to social, economic, and other dynamic systems.

Suggested Technical Electives: Aerospace Science and Engineering 129, 139, 141; Electrical and Computer Engineering 160; Engineering 122; Mechanical Engineering 121, 134, 152.

Transportation Systems

An important aspect of mechanical engineering is the planning, design, and operation of transportation systems. As society recognizes the increasing importance of optimizing transportation systems to minimize environmental degradation and energy expenditure, engineers will need to consider major innovations in the way people and goods are moved. Such innovations will require competence in vehicle dynamics, propulsion and control, and an understanding of the problems caused by present-day modes of transportation.

Suggested Technical Electives: Aerospace Science and Engineering 127, 129; Biological Systems Engineering 114, 120; Civil and Environmental Engineering 131, 149; Engineering 122, 160 (only one unit of credit towards technical electives requirement); Mechanical Engineering 134, 150B, 161, 163.

border